СЕКАНС - определение. Что такое СЕКАНС
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое СЕКАНС - определение

ФУНКЦИИ, ВЫРАЖАЮЩИЕ ОТНОШЕНИЯ МЕЖДУ СТОРОНАМИ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА
Тангенс; Косинус; Котангенс; Секанс; Косеканс; Синус (функция); Sinus; Tan; Тригонометрическая функция; Sin; Tg; Ctg; Cotan; Cosec; Csc; Sec; Синус; Формулы приведения; Тригонометрические таблицы
  • none
  • none
  • none
  • none
  • none
  • none
  • Рис. 4.<br>Тригонометрические функции острого угла
  • Определение тангенса. Марка СССР 1961 года
  • Рис. 2.<br>Определение тригонометрических функций
  • тригонометрической окружности]] с радиусом, равным единице
  • inline}}
  • Значения косинуса и синуса на окружности
Найдено результатов: 46
СЕКАНС         
(лат. secans - секущая), одна из тригонометрических функций.
Секанс         

[лат. secans, здесь - секущая (прямая); от seco - режу, рассекаю], одна из тригонометрических функций (См. Тригонометрические функции); обозначение sec. В прямоугольном треугольнике С. острого угла называют отношение гипотенузы к катету, прилежащему к этому углу.

СЕКАНС         
[сэ], а, м. мат.
Одна из тригонометрических функций угла, представляющая собой отношение гипотенузы к катету, прилежащему к этому углу в прямоугольном треугольнике.||Ср. КОСЕКАНС, КОСИНУС, КОТАНГЕНС, СИНУС, ТАНГЕНС.
секанс         
муж. тригоном. луч (радиус) круга, протянутый до конца касательной черты, за окружность.
секанс         
С'ЕКАНС [сэ], секанса, ·муж. (латин secans, ·букв. рассекающий) (мат.). Тригонометрическая функция угла, в прямоугольном треугольнике равная отношению гипотенузы к катету, прилежащему к углу.
секанс         
м.
Тригонометрическая функция угла, в прямоугольном треугольнике равная отношению гипотенузы к катету, прилежащему к данному углу.
КОСИНУС         
(новолат. cosinus, от complementi sinus - синус дополнения), одна из тригонометрических функций.
косеканс         
м.
Одна из тригонометрических функций, секанс дополнительного угла.
синус         
С'ИНУС, синуса, ·муж. (·лат. sinus - изгиб, кривизна) (мат.). Тригонометрическая функция угла, в прямоугольном треугольнике равная отношения катета, противолежащего углу, к гипотенузе.
II. С'ИНУС, синуса, ·муж. (·лат. sinus - изгиб, кривизна) (анат.). Название различных пазух, углублений, полостей и замкнутых каналов. Венозный синус сердца.
КОСЕКАНС         
[сэ], а, м., мат.
Одна из тригонометрических функций угла, представляющая собой отношение гипотенузы к катету, лежащему против этого угла в прямоугольном треугольнике.||Ср. КОСИНУС, КОТАНГЕНС, СЕКАНС, СИНУС, ТАНГЕНС.

Википедия

Тригонометрические функции

Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла дуги в круге). Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.

Раздел математики, изучающий свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям традиционно причисляют:

прямые тригонометрические функции:
  • синус ( sin x {\displaystyle \sin x} );
  • косинус ( cos x {\displaystyle \cos x} );
производные тригонометрические функции:
  • тангенс ( t g x = sin x cos x ) {\displaystyle \left(\mathrm {tg} \,x={\frac {\sin x}{\cos x}}\right)} ;
  • котангенс ( c t g x = cos x sin x ) {\displaystyle \left(\mathrm {ctg} \,x={\frac {\cos x}{\sin x}}\right)} ;
  • секанс ( sec x = 1 cos x ) {\displaystyle \left(\sec x={\frac {1}{\cos x}}\right)} ;
  • косеканс ( c o s e c x = 1 sin x ) {\displaystyle \left(\mathrm {cosec} \,x={\frac {1}{\sin x}}\right)} ;
обратные тригонометрические функции:
  • арксинус, арккосинус и т. д.

В типографике литературы на разных языках сокращённое обозначение тригонометрических функций различно, например, в англоязычной литературе тангенс, котангенс и косеканс обозначаются tan x {\displaystyle \tan x} , cot x {\displaystyle \cot x} , csc x {\displaystyle \csc x} . До Второй мировой войны в Германии и во Франции эти функции обозначались так же, как принято в русскоязычных текстах, но потом в литературе на языках этих стран был принят англоязычный вариант записи тригонометрических функций.

Кроме этих шести широко известных тригонометрических функций, иногда в литературе используются некоторые редко используемые тригонометрические функции (версинус и т. д.).

Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначны, периодичны и бесконечно дифференцируемы, за исключением счётного числа разрывов второго рода: у тангенса и секанса в точках ± π n + π 2 {\displaystyle \pm \pi n+{\frac {\pi }{2}}} , а у котангенса и косеканса — в точках ± π n {\displaystyle \pm \pi n} .
Графики тригонометрических функций показаны на рис. 1.

Что такое СЕКАНС - определение